Research Journal of Pharmaceutical, Biological and Chemical Sciences

Studies on ternary intermediate complex formation in the $\mathbf{M n}$ " catalysed Periodate oxidation of o-Toluidine - Evaluation of Stability constant.

Jaspal Singh ${ }^{1}$, RD Kaushik ${ }^{1 *}$, Nishant Khandelwal ${ }^{1}$, Malvika Chawla ${ }^{1}$ and Ekata Kumari².

${ }^{1}$ Department of Chemistry, Gurukul Kangri University, Haridwar (Uttarakhand) India
${ }^{2}$ Uttaranchal College of Science and Technology, Dehradun (Uttarakhand), India

Abstract

Although proposed in many cases, the ternary complexation during periodate oxidation of majority of anilines catalysed by metals like $\mathrm{Mn}^{\prime \prime}$, has not been thoroughly subjected to investigations particularly from point of view of evaluation of stability constant of the ternary complex formed and collecting the supporting evidences. In this paper, the formation of ternary intermediate unstable complex $\mathrm{OT}-\mathrm{Mn}^{\prime \prime}-\mathrm{IO}_{4}{ }^{-}$during $\mathrm{Mn}^{\prime \prime}$ catalysed reduction of periodate by o toluidine (OT)has been explored and its stability constant has been evaluated. Its value of (1.97 ± 0.73) $\times 10^{7}$ has been found to be in good agreement with that calculated from rate equation derived by us on the basis of kinetic studies made by using stopped flow method. As evidenced from the stopped flow trace, the formation of complex is comparatively faster than its decomposition into other reaction products. The kinetics of ternary complexation is given by the Eqn., $\mathrm{d}\left[\mathrm{C}_{2}\right] / \mathrm{dt}=($ $\left.k_{f} K_{1}[\mathrm{OT}][1]+k_{r}\right)\left(\left[\mathrm{C}_{2}\right]_{\text {eq }}-\left[\mathrm{C}_{2}\right]\right)$

where, $k_{f} / k_{r}=K_{2}$ i.e. equilibrium constant for the reaction of $\mathrm{OT}-\mathrm{Mn}^{11}$ and $\mathrm{IO}_{4}{ }^{-}$, K_{1} equilibrium constant for formation of binary complex $\mathrm{OT}-\mathrm{Mn}{ }^{\prime \prime},\left[\mathrm{C}_{2}\right]$ is concentration of ternary complex at given time t, and $\left[\mathrm{C}_{2}\right]_{\text {eq }}$ is the equilibrium concentration of ternary complex.
Keywords: Stopped flow kinetics, stability constant, ternary complex, Mn" catalysed, Periodate oxidation, o-toluidine

*Corresponding author

INTRODUCTION

Aromatic amines can come in contact with living organisms by inhalation, ingestion and skin contact and most of these are enlisted as carcinogenic and/ or toxic due to their genotoxic or cytotoxic properties[1,2]. Being used as intermediates for plastics, drugs, rubber, explosives, polymers, pesticides etc, anilines can affect the living organisms by inhalation, skin contact and ingestion[3]. Their role in various physiological activities can be explored by studying their behavior when these come in contact with metals and oxidants. There are many reports that indicate the formation of binary or ternary complex formation as intermediates during metal catalysed/ uncatalysed oxidation of aromatic amines by periodate ion[4-30]. The detailed kineticmechanistic studies on $\mathrm{Mn}^{\text {" }}$ catalysed reduction of periodate by 2,3 -xylidines and $3,5-x y l i d i n e[31,32]$ and and studies on the ternary complex formation between these xylidines, $\mathrm{Mn}^{\prime \prime}$ and periodate[33-34], are further continued in this communication. We have evaluated the stability constant of ternary complex while it is being formed between o-toluidine (OT), $\mathrm{Mn}^{\text {" }}$, and periodate ion in acetone-water medium and the results along with the supporting evidences are being presented in this communication.

EXPERIMENTAL

Reagents and Chemicals

Solutions were prepared in triply distilled water. Redistilled or recrystallized chemicals like o-toluidine (OT) (GS Chemical), sodium metaperiodate(I) (Loba Chemie), manganese sulphate monohydrate(Mn") (Aldrich) and other chemicals of guaranteed reagent or analytical reagent grade were used. Buffers comprising of the prescribed concentrations of solutions of succinic acid, oxalic acid, boric acid, sodium sulphate and borax[35] were used for keeping pH of reaction mixtures at desired value.

Kinetic procedure

Shimadzu double beam spectrophotometer, UV-1800 was used for recording the absorption maxima($\lambda_{\max }$) of reactants, catalyst and reaction mixture in presence/ absence of catalyst. Spectrophotometer was coupled with Shimadzu TCC- 240 temperature control unit with $\pm 0.1^{\circ} \mathrm{C}$ accuracy. Experiments were conducted only during the time in which $\lambda_{\max }$ remained unchanged as shown in Fig. 1.

Fig.1: Compression of UV-VIS rapid scans of Uncatalyzed and Catalyzed reaction at [OT] $=4.0 \times 10^{-4} \mathrm{~mol} \mathrm{dm}{ }^{-3}$, $[\mathrm{I}]=2.0 \times 10^{-}$ ${ }^{3} \mathrm{~mol} \mathrm{dm}^{-3}$, Acetone $=5.0 \%(\mathrm{v} / \mathrm{v}), \mathrm{pH}=5.0, \mathrm{Temp} .=30 \pm 0.01^{\circ} \mathrm{C}, \lambda_{\max }=500 \mathrm{~nm}$. $\left[\mathrm{Mn} \mathrm{M}^{\mathrm{II}}\right]=7.28 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}$, (for Catalyzed reaction only). U and C represent the Uncatalyzed and Catalyzed reaction respecively.

As the $\lambda_{\max }$ was 500 nm for the reaction mixture, the change in absorbance with time was recorded at this wavelength only using Applied Photophysics make stop flow SX-20 equipment coupled with Thermo Scientific NESLAB RTE7 thermostatic control unit with $\left(\pm 0.01^{\circ} \mathrm{C}\right.$ accuracy. Buffer solution was used for baseline setting to zero absorbance. After it, the reaction was started by unloading the two syringes - one loaded with periodate and the other loaded with substrate plus $\mathrm{Mn}^{\prime \prime}$ solution. Pseudo first order rate constants were obtained by treatment of data with the software SX-20 Prodata.

RESULTS AND DISCUSSION

Preliminary observations

Following features were observed for the reaction under consideration:

1. No reaction could be observed between OT and Mn ".
2. No reaction was observed between $\mathrm{Mn}^{\prime \prime}$ and I.
3. $\lambda_{\max }$ of reaction mixture(having $\mathrm{Mn}^{\prime \prime}, \mathrm{OT}$ and I) and same mixture without $\mathrm{Mn}^{\prime \prime}$, was 500 nm . However, the molar extinction coefficient is high in presence of $\mathrm{Mn}^{\prime \prime}$.
4. Reaction mixture turned pink which later changes in to brownish pink colour. After it, precipitation is observed in 24 hours.
5. Separate experiments showed the reaction to be first order w. r. t. OT, I and Mn". Therefore, pseudo first order conditions were adopted for following the kinetics of this reaction.

The reaction between periodate and OT in presence of Mn " has been shown to be first order in each reactant and catalyst as already reported[6]. So the kinetics was studied under pseudo first order conditions.

Stability constant of OT - Mn" - I ternary complex

In all experiments involving the stop-flow spectrophotometric for studying the ternary complex formation and for determining its stability constant, following conditions were maintained:
[I] >> [OT] >>> [Mn"]

Fig. 2, presenting the stop-flow trace, spells out the fast formation of ternary complex($\sim 200 \mathrm{~s}$ required for 70% reaction to take place). After it, a relatively slow step follows in which this complex decays. Equilibrium is attained in about 300-2000 s.

Fig. 2: The complete kinetic profile (in terms of stopped flow trace) for Mn^{11} catalysed oxidation of OT by NaIO_{4} at [OT] = $9.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}, \mathrm{pH}=5.0,[\mathrm{I}]=9.0 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3},\left[\mathrm{Mn}^{11}\right]=8.28 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}$, Temp. $=30.0 \pm 0.01^{\circ} \mathrm{C}$, acetone $=5.0 \%$ $(v / v), \lambda_{\text {max }}=500 \mathrm{~nm}$.

Faster rate of formation and slower second stage, suggest that the maximum absorbance obtained in each stop flow set can be assumed to be the equilibrium absorbance $\left(\mathrm{A}_{e}\right)$ of ternary complex. A_{e} values are given in Table 1.

Table-1 Ae values for $\left[\mathrm{Mn}^{\mathrm{H}}-\mathrm{OT}-\mathrm{IO}_{4}^{-}\right]$ternary complex at $\mathrm{pH}=5.0, \lambda_{\max }=500 \mathrm{~nm},[\mathrm{Mn}(\mathrm{II})] \times 10^{6}=8.28 \mathrm{~mol} \mathrm{dm}^{-3}$, Temp. $=30.0 \pm 0.01^{\circ} \mathrm{C}$, Acetone $=5.0 \%(\mathrm{v} / \mathrm{v})$

$\left[\mathrm{NaIO}_{4}\right] \times 10^{4} \mathrm{~mol}$ dm -3	$[\mathrm{OT}] \times 10^{5} \mathrm{~mol} \mathrm{dm}^{-3}$	Absorbance at equilibrium $\left(\mathrm{A}_{\mathrm{e}}\right)$
7.0	9.0	0.095
8.0	9.0	0.099
9.0	9.0	0.103
10.0	9.0	0.106
11.0	9.0	0.101
9.0	7.5	0.093
9.0	8.0	0.097
9.0	8.5	0.100
9.0	9.0	0.103
9.0	9.5	0.105

When a solution containing Mn " and OT was mixed with solution of I , the ternary complex was formed in stop-flow experiment. Therefore, the formation of a complex can be written as in Eq (1),

where C_{2} is the ternary complex, $\mathrm{OT}-\mathrm{Mn}$ " - .
The proposed mechanism of the formation of ternary complex can be given as follows:

Now onwards, the ratio k_{f} / k_{r} is being used to represent the equilibrium constant of reaction (3) i.e. K_{2}.

The spectra of $\mathrm{OT}, \mathrm{I}, \mathrm{Mn}$ " and reaction mixtures for catalysed/uncatalysed reactions show that only ternary complex absorbs at 500 nm . At this wavelength, Mn ", OT, $\mathrm{Mn}^{\prime \prime}$ - OT and $\mathrm{Mn}^{\prime \prime}$ - I display no significant absorbance. However, the OT - I adduct absorb at 500 nm , but its absorbance can be ignored.

If the absorbance values at pre-selected wavelength, 500 nm , are measured in solutions containing different [OT] and [I] but at fixed [$\mathrm{Mn} n^{\prime \prime}$], it can be shown that $[36,37$]
$\mathrm{A}_{\mathrm{e}}=-\left(\mathrm{A}_{\mathrm{e}}-\mathrm{A}_{0}\right) / K[\mathrm{OT}][I]+\mathrm{A}_{\infty}$
where A_{e} has already been defined earlier, A_{∞} is the absorbance when $\mathrm{Mn}^{\prime \prime}$ is fully present as ternary complex, and A_{0} is the absorbance of $\mathrm{Mn}^{\prime \prime}$ in the absence of OT and I . K is the overall stability constant and based on Eq. (1) is defined by Eq. (5).
$K=\left[\mathrm{Mn}^{\prime \prime}-\mathrm{OT}-\mathrm{I}\right] /\left[\mathrm{Mn}{ }^{\text {II }}\right][\mathrm{OT}][\mathrm{I}]$
where, $\left[\mathrm{Mn}^{\prime \prime}-\mathrm{OT}-\mathrm{I}\right]=\left[\mathrm{C}_{2}\right]_{\mathrm{eq}}=$ equilibrium concentration of ternary complex, $\left[\mathrm{Mn}{ }^{\prime \prime}\right]=$ equilibrium concentration of uncomplexed $\mathrm{Mn}^{\prime \prime}$. And [OT] and [I] are initial concentrations of OT and periodate, respectively.

On replacing [$\left.\mathrm{Mn} \mathrm{n}^{\prime \prime}-\mathrm{OT}-\mathrm{I}\right]$ by $\left[\mathrm{C}_{2}\right]_{\text {eq }}$, Eq. (5) becomes Eq. (6) or (7).
$K=\left[\mathrm{C}_{2}\right]_{\mathrm{eq}} /[\mathrm{Mn"}][\mathrm{OT}][\mathrm{I}]$
$\left[\mathrm{Mn}^{\mathrm{I}}\right]=\left[\mathrm{C}_{2}\right]_{\text {eq }} / K[\mathrm{OT}][I]$
By mass balance, total Mn " concentration, $\left[\mathrm{Mn} \mathrm{n}^{\mathrm{I}}\right]_{0}$ is given by Eq. (8)
$\left[\mathrm{Mn}^{\prime \prime}\right]_{0}=\left[\mathrm{Mn}^{\prime \prime}\right]+\left[\mathrm{Mn}{ }^{\prime \prime}-\mathrm{OT}\right]+\left[\mathrm{Mn}^{\prime \prime}-\mathrm{OT}-\mathrm{I}\right]$
[C_{1}]
$\left[C_{2}\right]_{\text {eq }}$

Since [$\left.\mathrm{Mn} n^{\prime \prime}-\mathrm{OT}\right]$ is assumed to be very small, it can be neglected in Eq. (8).
$\left[\mathrm{Mn}^{\mathrm{I}}\right]_{0}=\left[\mathrm{Mn} \mathrm{n}^{\mathrm{I}}\right]+\left[\mathrm{C}_{2}\right]_{\text {eq }}$
or
$\left[\mathrm{C}_{2}\right]_{\text {eq }}=\left[\mathrm{Mn}^{11}\right]_{0}-\left[\mathrm{Mn}^{\prime \prime}\right]$
Putting the value of $\left[\mathrm{Mn}^{\text {" }}\right]$ from Eq. (7) into Eq. (10), we get
$\left[\mathrm{C}_{2}\right]_{\mathrm{eq}}=[\mathrm{Mn"}]_{\mathrm{o}}-\left[\mathrm{C}_{2}\right]_{\mathrm{eq}} / K[\mathrm{OT}][\mathrm{I}]$
As the binary complex, $\mathrm{Mn}^{\prime \prime}-\mathrm{OT}$, has no absorbance at chosen wavelength (500 nm) under the experimental conditions, the absorbance A_{e} can be safely assumed only due to ternary complex.

If A_{e} is absorbance of ternary complex, C_{2}, and ε is its molar absorptivity then for cell of path length 1 cm , we have
$\mathrm{A}_{\mathrm{e}}=\varepsilon\left[\mathrm{C}_{2}\right]$
where $\left[\mathrm{C}_{2}\right]$ is the concentration of the ternary complex at time t. When whole of the manganese (II), i.e., $\left[\mathrm{Mn}^{\mathrm{I}}\right]_{0}$, is present as complex, then observed absorbance is equal to A_{∞}. So replacing the values of A_{e} by A_{∞} and $\left[\mathrm{C}_{2}\right]$ by $\left[\mathrm{Mn}{ }^{\prime \prime}\right]_{0}$ in Eq. (12), we obtain,
$\mathrm{A}_{\infty}=\left[\mathrm{Mn}^{\prime \prime}\right]_{0} . \varepsilon$
or
$\left[\mathrm{Mn}^{\mathrm{I}}\right]_{0}=\mathrm{A}_{\infty} / \varepsilon$
Substituting the value of $\left[\mathrm{C}_{2}\right]$ and $\left[\mathrm{Mn}^{\prime \prime}\right]_{0}$ in equation (11) from equation (13) and (12).
$\mathrm{A}_{\mathrm{e}} / \varepsilon=\mathrm{A}_{\infty} / \varepsilon-\mathrm{A}_{\mathrm{e}} / \varepsilon K$ [OT] [I]
which on rearrangement becomes Eq. (14)
$1 / \mathrm{A}_{\mathrm{e}}=1 / \mathrm{A}_{\infty} K[\mathrm{OT}][I]+1 / \mathrm{A}_{\infty}$
This equation assumes that no species other then ternary complex absorbs at chosen wavelength, 500 $n m$.

Ae values were determined at different concentration of I keeping [OT] fixed. In this condition, equation (14) leads to Eq. (15).
$1 / \mathrm{A}_{\mathrm{e}}=1 / K_{1}[I] \mathrm{A}_{\infty}+1 / \mathrm{A}_{\infty}$
Comparison of Eqs. (14) and (15) gives $K_{1}=K$ [OT].
A_{e} were also determined at different concentration of [OT] at fixed concentration of [I] I different experiments. This condition changes the equation (14) as follows,
$1 / A_{e}=1 / K_{1}[O T] A_{\infty}+1 / A_{\infty}$
Eqs. (14) and (16) lead to $K_{1}=K$ [I].

As required by Eq. (15), for the variation of I, the plot of $1 / A_{e}$ versus $1 /[I]$ is a straight line as shown in Fig. 3. This plot yields slope, $\mathrm{S}_{1}=2.73 \times 10^{-3}$ and intercept, $\mathrm{I}_{1}=6.63$. According to equation (15), $\mathrm{S}_{1}=1 / K_{1} \mathrm{~A}_{\infty}$ and $I_{1}=1 / A_{\infty}$. So from the ratio, I_{1} / S_{1}, the value of K_{1} was found to be 2428.6 .

Likewise, from Fig. 3, for the variation of OT, we obtain, slope, $\mathrm{S}_{2}=4.37 \times 10^{-4}$ and intercept I_{2} was found to be 4.89. Eq. (16) shows $K_{1}=I_{2} / S_{2}$. From the values of S_{2} and I_{2}, we obtain $K_{1}=1.12 \times 10^{4}$.

Fig.3: Ae ${ }^{-1}$ vs. $\left[\mathrm{NaIO}_{4}\right]^{-1}$ or $[I]^{-1}$ plot $\left[\mathrm{Mn}^{11}\right]=8.28 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}, \mathrm{pH}=5.0$, Temp. $=30.0 \pm 0.01^{\circ} \mathrm{C}$, Acetone $=5.0 \%$ (v/v), $\lambda_{\text {max }}=500 \mathrm{~nm}$

From the K_{1} value of 1.12×10^{4} (at $[I]=9.0 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$), which is equal to $K[I]$, the value of K was found to be 1.24×10^{7}. On the other hand from the K_{1} value of 2428.6 (at [OT] $=9.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$), which is equal to K [OT], the value of K is found to be 2.70×10^{7}.

The excellent agreement between the K values, as determined from the [I] and [OT] variations at fixed $\left[\mathrm{Mn}{ }^{\prime \prime}\right]_{0}$, validates the hypothesis regarding the formation of ternary complex. The average value of K is $(1.97 \pm$ $0.73) \times 10^{7}$ at $\mathrm{pH}=5.0,\left[\mathrm{Mn}^{11}\right]_{0}=8.28 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}$ and $30.0 \pm 0.01^{\circ} \mathrm{c}$.

Kinetics of ternary complex formation

One of the complete kinetics profile is shown in Fig. 2. As discussed earlier, the second stage is relatively slow while the reaction occurs in two stages. The first stage is the formation of ternary brownish pink colour complex, for which the stability constant determination has just been undertaken.

The kinetics of the formation of the complex was studied at 550 nm under pseudo first order conditions, $[I] \gg[O T] \ggg\left[M n^{\prime \prime}\right]$. For ternary complex formation the values of first order rate constant, kobs, and overall rate constant ($k_{\text {cat }}$) are given in Table 2. Fig. 4 presents the first order plots. As expected, the value of $k_{\text {cat }}$ is constant.

Table-2 Dependence of reaction rate on concentration of reactants at $\mathrm{pH}=5.0, \lambda \mathrm{max}=500 \mathrm{~nm}$, Temp. $=30.0 \pm$ 0.010 C, Acetone $=5.0$ \% (v/v), [MnII]×106 = $8.28 \mathrm{~mol} \mathrm{dm}-3$

$\left[\mathrm{NaIO}_{4}\right] \times 10^{4}$ $\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$	$[\mathrm{OT}] \times 10^{5}$ $(\mathrm{~mol} \mathrm{dm}$	$k_{\text {obs }} \times 10^{2}$ $\left(\mathrm{~s}^{-1}\right)$	$k_{\text {cat }} \times 10^{-7}$ $\left(\mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}\right)$
7.0	9.0	9.5	5.4
8.0	9.0	9.9	5.5
9.0	9.0	10.3	5.3
10.0	9.0	10.6	5.3
11.0	9.0	11.0	5.3
9.0	7.5	9.3	4.9
9.0	8.0	9.7	5.0
9.0	8.5	10.0	5.2
9.0	9.0	10.3	5.3
9.0	9.5	10.5	5.5

Fig.4: $k_{\text {obs }}$ vs [I] or [OT] plots at $\left[\mathrm{Mn}^{I I}\right]=8.28 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}, \mathrm{pH}=5.0, \mathrm{Temp} .=30.0 \pm 0.01^{\circ} \mathrm{C}$, acetone $=5.0 \%(\mathrm{v} / \mathrm{v}), \lambda_{\max }=$ 500 nm

The value of $k_{\text {obs }}$ appears to be only dependent on [I] and [OT] which were in excess as compared to [$\mathrm{Mn}{ }^{\text {II }}$]. Kobs may be given by the Eq.

$$
\begin{equation*}
k_{o b s}=k_{r}+k_{f}^{\prime}[I] \tag{17}
\end{equation*}
$$

where k_{f}^{\prime} and k_{r} are empirical rate constants as defined later. In accordance to Eq. (17), a linear plot is expected between $k_{o b s}$ and [I] (Fig. 4). From this plot, the value of k_{f}^{\prime} and k_{r} were worked out. Their values are respectively, $33.44 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ and $9.46 \times 10^{-3} \mathrm{~s}^{-1}$.

Similarly, a linear plot is expected between $k_{o b s}$ and [OT] (Fig. 4). From this plot, the value of k_{f}^{\prime} and k_{r} were worked out. Their values are respectively, $231.56 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ and $1.87 \times 10^{-2} \mathrm{~s}^{-1}$.

Reaction Mechanism

The mechanism of ternary complex formation may be represented by the Eqs. 2-3. This mechanism is can not be taken as unique. One or more alternative mechanisms may possibly be written to explain the results obtained by us in this study. The rate of formation of C_{2} is given by:
$\mathrm{d}\left[\mathrm{C}_{2}\right] / \mathrm{dt}=k_{f}\left[\mathrm{Mn}{ }^{\prime \prime} . \mathrm{OT}\right][I]-k_{r}\left[\mathrm{C}_{2}\right]$
where $\left[\mathrm{C}_{2}\right]$ is the concentration of the ternary complex at time t. By mass balance,
$\left[\mathrm{Mn}^{\prime \prime}\right]_{0}=\left[\mathrm{Mn}^{\prime \prime}\right]+\left[\mathrm{Mn}{ }^{\prime \prime} . \mathrm{OT}\right]+\left[\mathrm{C}_{2}\right]$

Assuming that the concentration of $\mathrm{Mn}^{\prime \prime}$ - OT is very small, and negligible, Eq. (19) becomes Eq. (20).
$\left[\mathrm{Mn}^{\mathrm{I}}\right]_{0}=\left[\mathrm{Mn}^{\mathrm{II}}\right]+\left[\mathrm{C}_{2}\right]$
As already assumed, equilibrium for the formation of the binary complex, $\mathrm{Mn} n^{\prime \prime}$ - OT , is rapidly established. Therefore, the value of concentration of $\mathrm{Mn}^{\prime \prime}$ - OT is given by,
$K_{1}=\left[\mathrm{Mn}^{\prime \prime} . \mathrm{OT}\right] /\left[\mathrm{Mn}^{\text {" }}\right][\mathrm{OT}]$
Substituting $\left[\mathrm{Mn}^{\prime \prime}-\mathrm{OT}\right]=K_{1}\left[\mathrm{Mn}^{\prime \prime}\right][\mathrm{OT}]$ in Eq. (18), we get,
$\mathrm{d}\left[\mathrm{C}_{2}\right] / \mathrm{dt}=k_{f} K_{1}\left[\mathrm{Mn}{ }^{\text {II }}\right][\mathrm{OT}][\mathrm{I}]-k_{r}\left[\mathrm{C}_{2}\right]$
On substituting $\left[\mathrm{Mn}^{\mathrm{I}}\right]=\left[\mathrm{Mn}^{\mathrm{I}}\right]_{0}-\left[\mathrm{C}_{2}\right]$ from Eq. (20) in Eq. (22), we get,
$\mathrm{d}\left[\mathrm{C}_{2}\right] / \mathrm{dt}=k_{f} K_{1}\left[\mathrm{Mn}{ }^{\mathrm{I}}\right]_{0}[\mathrm{OT}][I]-\left[\mathrm{C}_{2}\right]\left(k_{f} K_{1}[\mathrm{OT}][I]+k_{r}\right)$
If the ternary complex formation attains equilibrium then Eq. (23) becomes Eq. (24).
$k_{f} K_{1}[\mathrm{Mn"}]_{0}[\mathrm{OT}][I]=\left[\mathrm{C}_{2}\right]_{\text {eq }}\left(k_{f} K_{1}[\mathrm{OT}][I]+k_{r}\right)$
Now from Eqs. (23) and (24), we get,
$\mathrm{d}\left[\mathrm{C}_{2}\right] / \mathrm{dt}=\left(k_{f} K_{1}[\mathrm{OT}][I]+k_{r}\right)\left(\left[\mathrm{C}_{2}\right]_{\mathrm{eq}}-\left[\mathrm{C}_{2}\right]\right)$
which on modification becomes,
$\mathrm{d}\left[\mathrm{C}_{2}\right] / \mathrm{dt}=k_{\text {obs }}\left(\left[\mathrm{C}_{2}\right]_{\text {eq }}-\left[\mathrm{C}_{2}\right]\right)$
where
$k_{\text {obs }}=k_{f} K_{1}[\mathrm{OT}][I]+k_{r}$
or $k_{\text {obs }}=k_{f}^{\prime}[I]+k_{r}$
where $k_{f}^{\prime}=k_{f} k_{1}$ [OT]
On integrating Eq. (26), we get,
$\ln \left\{\left[\mathrm{C}_{2}\right]_{\text {eq }} /\left(\left[\mathrm{C}_{2}\right]_{\text {eq }}-\left[\mathrm{C}_{2}\right]\right)\right\}=k_{\text {obs }} . t$
Table - 3 : Data analysis for [Mn"-OT-I] ternary complex formation

| $[I]$
 $\mathrm{mol} \mathrm{dm}^{-3}$ | $[\mathrm{OT}]$
 mol dm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| variation | |

According to Eq. (27) the plot of $k_{\text {obs }}$ versus [I] (at constant [OT]) is straight line with a intercept $=k_{r}$ and slope $=k_{f} K_{1}[\mathrm{OT}]$ (Fig.4). Also, the plot of $k_{\text {obs }}$ versus [OT] (at constant [I]) is also straight line with intercept $=k_{r}$ and slope $=k_{f} K_{1}[I]$ (Fig. 4). Table 3 gives the values of slopes and intercepts determined from this figure. From I and OT variations respectively, using the values of intercepts and slopes of plots in Fig.4, the values of $k_{f} . K_{1}$ were found to be 3.71×10^{5} and $2.57 \times 10^{5} \mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$. Likewise, the values of $k_{f} K_{1} / k_{r}$ determined from same figures were found to be 3.93×10^{7} and $1.37 \times 10^{7} \mathrm{dm}^{6} \mathrm{~mol}^{-2}$. Therefore, mechanism and rate law are
very well supported by the good agreement between parameters obtained from variation of o-toluidine and periodate.

REFERENCES

[1] Pinheiro HM, Touraud E, Thomas O. Dyes and Pigments 2004; 61:121
[2] Dupret JM, Dairou J, Busi F, Silar P, Martins M, Mougin C, Lima FR, Cocaign A. In Tech Croatia 2011; pp. 601
[3] Mortensen SK, Trier XT. Foverskov A, Petersen JH. J Chromatogr A 2005; 1091:40
[4] Pavolva VK, Sevchenko YaS, Yatsimiriskii KB. Zh Fiz Khim 1970; 44: 658
[5] Kaushik RD, Amrita, Dubey M, Singh RP. Asian J Chem 2004; 16(2): 831
[6] Kaushik RD, Kumar V, Arya RK, Singh D. Asian J Chem 2000; 12: 1123
[7] Kaushik RD, Singh RP, Shashi. Asian J Chem 2003; 15: 1485
[8] Kaushik RD, Malik R, Kumar A. J Indian Chem Soc 2010; 87: 317
[9] Kaushik RD, Manila, Kumar D, Singh P. Oxid Commun 2010; 33: 519
[10] Kaushik RD, Kumari R, Kumar T, Singh P. Asian J Chem 2010; 22(10): 7959
[11] Kaushik RD, Chauby AK, Garg P K. Asian J Chem 2003; 15: 1655
[12] Kaushik RD, Arya RK, Kumar S. Asian J Chem 2000; 12: 1229
[13] Kaushik RD, Oswal SD, Singh D. Asian J Chem 2000; 12: 1129
[14] Kaushik RD, Kumar V, Kumar S. Asian J Chem 1999; 11: 633
[15] Kaushik RD, Singh D, Joshi R, Kumar S. Asian J Chem 1998; 10: 573
[16] Kaushik RD, Joshi R, Singh D. Asian J Chem 1998; 10: 567
[17] Kaushik RD, Joshi R. Asian J Chem 1997; 9: 527
[18] Kaushik RD, Rathi P, Manila, Singh J, Yadav R. J Chem Pharm Res 2014; 6(7): 2752
[19] Dolmanova IF, Poddubienko VP, Peshkova VM. Zh Anal Khim 1970; 25: 2146
[20] Kaushik RD, Shashi, Amrita, Devi S. Asian J Chem 2004; 16: 818
[21] Kaushik RD, Kumar D, Kumar A, Kumar A. J Indian Chem Soc 2010; 87(7): 811
[22] Kaushik RD, Kaur M, Malik R, Kumar A. Int J Chem Sci 2010; 8(3): 1379
[23] Kaushik RD, Kumar A, Kumar T, Singh P. React Kinet Mech Cat 2010; 101: 13
[24] Kaushik RD, Malik R, Kumar T, Singh P. Oxid Commun 2012; 35(2): 316
[25] Singh J, Malik R, Singh O, Sushma, Kaushik RD. Int J Chem Sci 2014; 12(2): 445
[26] Kaushik RD, Sundriyal P, Tyagi P, Singh P, Singh J. Int J Chem Sci 2014; 12(2): 600
[27] Kaushik RD, Singh J, Manila, Kaur M, Singh P. Bull Chem React Eng and Cat 2014; 9 (3): 182
[28] Kaushik RD, Malik R, Sing.O, Manila, Singh J. Int J ChemTech Res 2014; 6(5): 2695
[29] Kaushik RD, Yadav R, Tiwari MM, Rathi P, Singh J. Der Pharmacia Lettre 2014; 6(4): 78
[30] Kaushik RD, Malik R, Tiwari MM, Singh J, Singh P. Res J Pharma Bio Chem Sci 2014; 5(3): 1963
[31] Kaushik RD, Malik R, Agarwal R, Singh J. Res J Pharm Biol Chem Sci 2014; 5(3): 1644
[32] Kaushik RD, Singh J, Agarwal R, Kumari E. J Indian Chem Soc 2016; 93(1): 85
[33] Kaushik RD, Aggarwal R, Tyagi P, Singh O, Singh J. Bull Chem React Eng Cat 2015; 10(1): 78
[34] Kaushik RD, Singh J, Agarwal R, Kumari E. J Indian Chem Soc 2017; 94: 605
[35] Britton HTS "Hydrogen ions", D Von Nostrand Co. 1956; p. 354
[36] Conklin MH, Hoffmann MR. Environ Sci Technol 1988; 22: 899
[37] Gupta KS, Jain U, Singh U, Dhayal Y, Rani A. J Indian Chem Soc 2012; 89:1035
[38] Singh P, Kumar T, Malik R, Kaushik RD. Journal of Indian Council of Chemists 2011 28: 30.

